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AFIT/GAP/ENP/06-17 
Abstract 

 

An algorithm is presented to simulate fluid dynamics on a three qubit type II 

quantum computer: a lattice of small quantum computers that communicate classical 

information.  The algorithm presented is called a three qubit factorized quantum lattice 

gas algorithm.  It is modeled after classical lattice gas algorithms which move virtual 

particles along an imaginary lattice and change the particles’ momentums using collision 

rules when they meet at a lattice node.  Instead of moving particles, the quantum 

algorithm presented here moves probabilities, which interact via a unitary collision 

operator.  Probabilities are determined using ensemble measurement and are moved with 

classical communications channels.  The lattice node spacing is defined to be a 

microscopic scale length.  A mesoscopic governing equation for the lattice is derived for 

the most general three qubit collision operator which preserves particle number.  In the 

continuum limit of the lattice, a governing macroscopic partial differential equation—the 

diffusion equation—is derived for a particular collision operator using a Chapman-

Enskog expansion.  A numerical simulation of the algorithm is carried out on a 

conventional desktop computer and compared to the analytic solution of the diffusion 

equation.  The simulation agrees very well with the known solution. 
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TYPE II QUANTUM COMPUTING ALGORITHM 

FOR COMPUTATIONAL FLUID DYNAMICS 

 

1 Introduction 

1.1 Overview 

In 1982 Richard Feynman proposed building a computer based on quantum 

mechanical principles to efficiently simulate quantum systems.  In the two decades since, 

significant progress has been made both theoretically and experimentally towards this 

end.  Following Feynman’s vision, in 2002 the Air Force Research Laboratory and the 

Air Force Office of Scientific Research established a basic research theme called 

Quantum Computation for Physical Modeling [1].  The goal of this project is to explore 

quantum algorithms and practical quantum computers to model dynamic physical 

systems with an exponential increase in computational efficiency. 

This thesis supports this goal by extending an algorithm designed to model fluid 

dynamics using a lattice of interacting quantum systems.  This algorithm was used by 

Yepez to investigate Navier-Stokes equations of fluid dynamics [2-5], the diffusion 

equation [6-9], and the Burgers equation [10-12].  It is called the Factorized Quantum 

Lattice Gas Algorithm (FQLGA), and it derives its name from algorithms written to 

model fluid dynamics on classical computers.  These classical algorithms model particles 

on a spatial lattice.  The particles move from lattice node to lattice node in discrete time 

steps.  They include classical collision rules to control how particles interact when they 
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meet at a lattice node, where the distance between nodes is defined to be a microscopic 

scale length.  Since the algorithms consists of a gas of virtual particles moving on a 

discrete lattice, it is called a Lattice Gas Algorithm (LGA) by the fluid dynamics 

community, or a Classical Lattice Gas Algorithm (CLGA) by the quantum computing 

community to distinguish it from similar quantum lattice gas algorithms.  One may use an 

ensemble of (quantum or classical) lattice gases to develop a finite difference equation 

known as the mesoscopic lattice Boltzmann equation.  From this equation it is possible to 

develop a macroscopic effective field theory in the continuum limit of the lattice, 

essentially by taking the Taylor series expansion of the lattice Boltzmann equation 

around local equilibrium in what is known as a Chapman-Enskog expansion. 

The FQLGA is said to be “factorized” because it is designed to run on a quantum 

computer that is not fully coherent—that is, on a computer that is factorized into many 

smaller quantum computers communicating with classical information: a type II quantum 

computer.  This sort of computer is interesting because a prototype already exists which 

has run fluid dynamics simulations [6, 7, 11].  The algorithm developed by Yepez [2-12] 

uses a lattice of two quantum bit (qubit) computers to perform the computations.  Instead 

of moving particles across a one dimensional lattice probabilities are moved, and instead 

of using collision rules to govern interactions a unitary operator called the collision 

operator is used.  This thesis extends this algorithm to run on a three qubit type II 

quantum computer.  The main contributions presented in this paper are the computation 

of the lattice Boltzmann equations for the most general three qubit collision operator that 

conserves particle number, and the derivation of the diffusion equation as an effective 

field theory for a more specific collision operator.  In addition, numerical simulations 
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comparing the diffusion equation FQLGA simulation and the analytic solution of this 

partial differential equation are presented. 

This thesis is meant to be accessible to someone with a reasonable background in 

quantum physics, but with little exposure to the subjects of quantum computing or fluid 

dynamics.  As such, I will introduce some of the basics in each of these subjects before 

discussing the FQLGA.  

1.2  Organization 

This thesis begins with a summary of quantum computing in Section 2.  This 

section is aimed towards those who have studied quantum mechanics but have had little 

exposure to quantum computing.  It briefly discusses what a qubit is, how quantum logic 

gates perform computations, and how qubit measurement affects the type of information 

one may obtain from it.  I attempt to make this discussion easier to follow by using 

analogies with the more familiar classical bits and classical logic gates. 

Following this, the main categories of quantum algorithms developed thus far are 

reviewed to give readers an idea of where the FQLGA fits in the world of quantum 

computing.  Subsequently, several types of quantum computers in development are 

discussed, along with the various challenges associated with constructing each kind of 

computer.  The focus of this section is on Nuclear Magnetic Resonance (NMR) quantum 

computers because the most advanced quantum computer prototype to date uses NMR 

technology, and because these machines are best suited for the quantum algorithm 

developed in this paper.   
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Since the FQLGA models fluid dynamics, Section 3 introduces the basics of 

Navier-Stokes fluid dynamics as well as classical lattice gas and lattice Boltzmann 

algorithms used to simulate these fluids.  These classical algorithms can be used as an 

analogy to better understand their quantum counterparts.  A number of important 

macroscopic dimensionless parameters used to characterize Navier-Stokes fluids are 

listed and drawn on during an explanation of diffusive ordering.  The lattice Boltzmann 

equation, which comes from the more familiar Boltzmann equation, is also introduced. 

Following this brief introduction to quantum computing and classical lattice gas 

algorithms, Yepez’s factorized quantum lattice gas algorithm is introduced in Section 4.  

The details of this algorithm are laid out and the unitary collision operator is introduced.  

Following this is an explanation of how the entire algorithm can be contained in a single 

equation, the quantum lattice Boltzmann equation (QLBE).  Next, the local equilibrium 

probabilities are derived and subsequently used in the Chapman-Enskog expansion of the 

QLBE to derive the governing effective field theory of the lattice in the continuum limit.  

This governing equation turns out to be the one dimensional Burger’s equation, which is 

a second order nonlinear partial differential equation used to model turbulence and shock 

formation in inelastic gases.   

In Section 5 the three qubit FQLGA I have developed is introduced and the most 

general three qubit collision operator that conserves particle number is derived.  The 

quantum lattice Boltzmann equation is obtained using this operator. 

Section 6 introduces a more specific collision operator which yields the diffusion 

equation as the algorithm’s continuum limit governing partial differential equation.  A 

complete derivation of this equation is given starting from the QLBE in section 6.1.  In 
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section 6.2 the results of a numerical simulation carried out on a conventional computer 

are presented, and compared to the analytic solution of the diffusion equation.  Finally, a 

discussion of the error and of the convergence properties of the algorithm as compared to 

the analytic solution is included.  

2 Quantum Computing Summary 

Quantum computing was first proposed by Richard Feynman in 1982 [13, 14].  

He noted that there were certain difficulties in simulating quantum mechanical systems 

on classical computers due to the exponential growth of the problem with system 

complexity.  He suggested developing a computer based on the principles of quantum 

mechanics to overcome these difficulties.  In 1985 David Deutsch expanded on this idea 

while trying to use the laws of physics to derive a stronger version of the Church-Turing 

thesis.  This thesis states that the Turing model of computation is at least as efficient as 

any other model of computation, in the sense that if one computational model can solve a 

problem in time polynomial to the size of a problem, then a probabilistic Turing machine 

can too [15].  Since the laws of physics are ultimately quantum mechanical, this led 

Deutsch to develop the modern concept of quantum computers, which are able to 

efficiently solve problems that are believed to have no efficient solutions on classical 

computers and Turing machines. 

Deutsch developed a simple algorithm that suggested quantum computers would 

indeed have more computational power than a classical Turing machine (classical 

computer).  Over the next decade additional algorithms were developed culminating in 

1994 with Peter Shor’s factoring and discrete logarithm algorithms [16], and in 1997 with 
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Lov Grover’s search algorithm [17].  However, despite the immense progress made in 

developing these algorithms, physicists have so far managed only modest advancements 

in developing physical quantum computers.   

Sections 2.1 through 2.3 are meant to give a brief overview on how quantum 

computing works.   

2.1 Quantum bits 

In a quantum computer, qubits replace classical bits.  Qubits are analogous to 

classical bits in that when read (measured) they can only be 0 or 1.  However, before 

measurement—when a computation is being performed—a qubit can be in a 

superposition of 0 and 1 states.  Equation (2.1) shows the most general state of a qubit 

where 1  and 0  are the basis states for an arbitrary two level quantum system (for 

example spin up and down in a spin half particle).   

 sin( ) 1 cos( ) 0i iq e eξ ζθ θ= +  (2.1) 

2.1.1 Quantum gates 

To carry out a quantum algorithm, quantum computers perform unitary operations 

on qubits.  This is analogous to a classical algorithm being composed of ‘gates’ (AND, 

OR, NOT, XOR, etc.) that act on classical bits.  A straightforward example of this 

analogy is the classical exclusive or (XOR) gate and the quantum controlled not (CNOT) 

gate.  The XOR gate is shown in Figure 1a. 

The values c1 and c2 represent classical bits flowing down a wire (black line) from 

left to right.  They encounter the XOR gate and undergo modulo two addition (denoted 
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Figure 1.  a)  An XOR gate.  b) A modified XOR gate that preserves the bit c1. 

by ⊕ ) so that the XOR gate output is 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, and 1⊕ 1 = 0.  This 

is described in the truth table given in Table 1a.  In Figure 1b we have created a modified 

gate that preserves the bit c1.  Thus, this gate has an equal number of input and output 

bits.  All quantum gates share this property since the number of basis vectors used to 

represent ψ  remains constant.  Two electrons will always be spin up or down (or both) 

no matter what unitary operations one performs on them, so it is impossible to create a 

quantum gate with fewer outputs than inputs.  Therefore, the modified XOR gate shown 

in Figure 1b will be a better analogy to the CNOT gate, as we shall now see. 

Table 1.  a) Truth table for Figure 1a.  b) Truth table for Figure 1b.  Inputs are left of the gray bar, outputs 
are right. 

a)      b) 

             

Figure 2 shows a quantum CNOT gate.  In this diagram, straight lines represent 

qubit states, and time flows from left to right.  Again, the symbol ⊕  denotes modulo two 

addition.  A truth table for this gate is shown in Table 2.  Note that 2q  passes 

1c

2c
XOR 1 2c c⊕

1c

2c
XOR 1 2c c⊕

1c

a b



 8

unchanged as long as 1q  is 0 , and 2q  is changed if 1q  is 1 .  Thus 1q  is called 

the control qubit and the entire gate is called a control not gate.  The truth table given in 

Table 2 is the same as Table 1b, so that as long as 1q  and 2q  are definitely in either 

state 1  or 0  the gate acts as a modified classical XOR gate.  However, if either qubit 

is in a superposition of 1  or 0  states, then the outputs will also be in a superposition 

of states.  This ability of quantum bits to be a superposition of ones and zeros at the same 

time is what distinguishes quantum and classical computing.   

 
Figure 2.  Controlled not gate. 

Table 2.  CNOT gate truth table.  Inputs are left of the gray bar; outputs are right. 

 

The state of the entire system in Figure 2 is 1 2 1 2 q q q qψ = ⊗ = .  Note that 

since 1q  acts as a control, it is possible for the qubits to become entangled.  For 

instance, if the input state of the CNOT gate is 1 0 0 0a bψ = + , which can be 

factored into ( )1 0 0a b+ ⊗ , the output state will be 1 1 0 0a bψ = + , which 

1q

2q

1q

21 qq ⊕
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cannot be factored.  Before application of the CNOT gate, the state of the second qubit 

was independent of the first qubit, allowing ψ  to be factored.  However, after 

application of CNOT, the state of qubit two was directly dependent on the state of qubit 

one and ψ  could not be factored.  Thus, after the CNOT gate, the measurement of one 

qubit will immediately determine the state of the other and we say the qubits are 

entangled. 

The CNOT gate, like all quantum gates, is a unitary operation, and can be 

described in matrix form.  If we choose the following to be our basis 

 

1 0 0 0
0 1 0 0

1 1           1 0           0 1           0 0
0 0 1 0
0 0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → → →
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.2) 

then using Table 2, the CNOT matrix is 

 

0 1 0 0
1 0 0 0ˆ
0 0 1 0
0 0 0 1

cnotU

⎛ ⎞
⎜ ⎟
⎜ ⎟→
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.3) 

Returning to the problem discussed earlier, we can see that this formalism gives the same 

results. 

 

( ) ( )ˆ  1 0 0 0 1 1 0 0

0 1 0 0 0
1 0 0 0 0

                       
0 0 1 0 0 0
0 0 0 1

cnotU a b a b

a
a

b b

+ = +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.4) 
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One should note that quantum computers have an exponential increase in 

computational power as one adds more qubits [15].  This is because each additional qubit 

doubles the number of Hilbert space dimensions so that it has 2B dimensions, where B is 

the number of qubits.  For instance, if we have three qubits there are 23 dimensions with 

one choice of basis being 

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

111      110      101      011
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0

001
1
0
0
0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟→ ⎜ ⎟
⎜
⎜
⎜
⎜⎜
⎝ ⎠

0 0 0
0 0 0
0 0 0
0 0 0

     010      100      000
0 0 0
1 0 0
0 1 0
0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (2.5) 

For purposes of comparison, suppose that we had a classical computer that used 

three parallel lines, each of which simultaneously transmitted a bit to a central processor.  

Then at any given time the processor can compute using three bits, which we will define 

to be a byte.  So the classical computer can compute with one byte at a time.  In contrast, 

a similar quantum computer with a three qubit memory—all of which may be in a 

superposition of 1  and 0  states—can compute with all eight bytes simultaneously.  Of 

course the number of bytes the quantum computer can handle at one time rises 



 11

exponentially with additional bits.  Thus, for some problems the quantum computer is 

exponentially more powerful than a classical computer. 

2.1.2  Measurement 

After a calculation is completed, one must measure the quantum bits to get an 

answer.  Of course, if the output is in a superposition of states, as it is in equation (2.6) 

below, then one will get a random answer weighted by the coefficients in front of each 

state.  For the equation below, the computer will produce the binary output 1, 1 with 

probability 2a .   

 1 1 1 0 01 00a b c dψ = + + +  (2.6) 

To avoid the embarrassment of getting different answers each time, most quantum 

algorithms include steps to make the coefficients of the calculated incorrect answers go to 

zero.  However, the binary ones and zeros are not the only way one can code information; 

it can also be saved in the magnitude of the basis coefficients.  To get this information, 

one must either perform the computation many times on the same computer and average 

the measured results, or perform the same computation on many identical quantum 

computers and average these measured results.  The second method is called ensemble  

 
Figure 3.  Ensemble measurement averages the measurement results of N identical quantum computers to 
obtain the magnitude of basis coefficients.  The symbol with the arrow in the figure above is used in 
quantum computing literature to signify the measurement of a quantum system.   

N quantum computers 
2

2

# of computers in 11
 

N
# of computers in 10

 
N

etc...

a

b

≈

≈

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +
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measurement and is how information is extracted in a Nuclear Magnetic Resonance 

(NMR) quantum computer.  The FQLGA takes advantage of the ability of NMR 

machines to do ensemble measurement, so these computers be will discussed in more 

detail in section 2.3. 

For convenience, one may represent the results of an ensemble measurement 

using projectors or matrices.  For instance, suppose we are interested in measuring the 

probability of finding the second qubit in Figure 3 in the state 1 .  Then one can write 

( ) ( )2 22 2
2 1 11 01 11 11 01 01P q a c ψ ψ ψ ψ= = + = + = + . (2.7) 

The far right hand side of (2.7) indicates that the probability of the second qubit being 1  

is equal to 2n̂ψ ψ , where 2ˆ 11 11 01 01n ≡ +  is called the number operator and is 

defined to be the sum of those projectors whose second qubit is 1 .  Using the basis 

given in (2.2), we can rewrite the number operator in matrix notation: 

 2

1 0 0 0
0 0 0 0

ˆ 11 11 01 01
0 0 1 0
0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ + →
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.8) 

Similarly, the probability of finding the first qubit in 1  is equal to 1̂nψ ψ  where 

 1

1 0 0 0
0 1 0 0

ˆ 11 11 10 10
0 0 0 0
0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ + →
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.9) 
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Note that 1̂n  and 2n̂  are not unitary and therefore do not represent operations that can be 

performed by a quantum computer.  Rather, they are convenient notations allowing one 

to predict the results of an ensemble measurement. 

2.2  Quantum algorithms 

A quantum algorithm consists of a series of unitary transformations performed on 

qubits followed by a measurement designed to perform a computation.  To this date, the 

types of quantum algorithms developed generally fall into three categories: Fourier 

transform, search, and simulation algorithms [15]. 

The Fourier transform algorithm is the backbone of Shor’s factoring and discrete 

logarithm algorithms, and it involves taking the Fourier transform of a set of numbers: 

{ 0 2 1
,...  nx x

−
 } to get a new set: { 0 2 1

,...  ny y
−

}.  Suppose one prepares a state, 

2 1

0

n

j
j

x jψ
−

=

= ∑ , so that the coefficients jx  of the basis states are the numbers one wishes 

to transform.  Then one may define a unitary transformation such that 

 
2 1

2 / 2

0

1
2

n
nijk

n
k

j e kπ
−

=

→ ∑ . (2.10) 

If this transformation is performed on ψ , we see that the new coefficients are the 

Fourier transformed set { 0 2 1
,...  ny y

−
}, which we wanted. 

 
2 1 2 1 2 1 2 1

2 / 2

0 0 0 0

1
2

n n n n
nijk

j j kn
j k j k

x j e x k y kπ
− − − −

= = = =

⎡ ⎤
→ =⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑  (2.11) 

Of course one cannot simply read off the coefficients yk.  If one tried, the wave 

function would collapse into a random collection of bits.  It takes an additional amount of 
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cleverness and a few more quantum logic gates to get useful information from this 

transformation.  Nevertheless, this algorithm can complete the transform in about n2 steps 

as opposed to the classical n2n steps (for 2n  numbers) [16]—an exponential speedup! 

Grover’s search algorithm is an example of the second kind of quantum 

algorithm—the search algorithm.  Grover’s algorithm is designed to search a space of 

size n, looking for an element in it with some desirable attributes, with no information 

about the structure of the space.  Classically, this problem requires about n steps while 

the quantum algorithm can accomplish it in about n  steps [17]. 

Finally, simulation algorithms can be used to model physical (typically quantum) 

systems.  Quantum computers are ideal for this task because their Hilbert space increases 

exponentially with the number of qubits involved.  If the system we are attempting to 

model is quantum mechanical and has n components, then in general it takes cn bits of 

memory on a classical computer to model it, where c is some constant associated with the 

details of the system.  On the other hand, a quantum computer only requires k n qubits to 

model the system, where again k is a constant that depends on the system [15].  Though 

simulation algorithms intended for quantum computers are typically designed to model 

quantum systems, they can also model classical systems.  The Factorized Quantum 

Lattice Gas Algorithm is an example of a quantum algorithm designed to model a 

classical system.   

2.3 Physical quantum computers 

Due to the enormous challenge associated with isolating and precisely controlling 

single particles, quantum computers are currently incapable of rivaling their classical 
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counterparts.  Quantum computers come in two varieties called type I and type II.  Type I 

machines are ‘pure’ quantum computers and utilize a number of qubits, each of which 

can be entangled with any other using an arbitrary unitary transformation.  Type II 

machines are not as powerful but are easier to create in practice.  They consist of a 

number of small type I quantum computers (called nodes) with as few as two qubits in 

each, connected by classical communications channels carrying bits instead of qubits 

[18].  Figure 4 shows a simple diagram of a type-II computer. 

 
Figure 4.  Type-II quantum computer. 

The four most developed technologies for quantum computing are optical 

techniques, ion traps, neutral atom traps, and nuclear magnetic resonance.  One of the 

most significant problems for each of these technologies is decoherence.  Decoherence is 

the uncontrolled entanglement of a system with its environment, destroying the 

superposition of qubit states within the system and losing the information it contains [19].  

The time it takes for this process to occur, called the decoherence time, is very short in 

most systems and therefore limits the number of operations that can be performed on a 
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given number of qubits.  Table 3 lists the various decoherence times (tQ) of some of the 

systems under investigation, along with the time it takes to perform an operation (top) on 

the system [15].  This gives a general idea of the number of operations that can be 

performed on the system (nop) before quantum information is lost.   

Table 3.  Estimates for the decoherence time tQ, operation time top, and maximum number of operations nop 
for quantum computer candidates [15]. 

 

Given the long decoherence times of nuclear spins, it is not surprising that the 

most advanced quantum computers rely on encoding quantum information in atoms with 

spin half nuclei using NMR technology.  This is done by placing a liquid sample in a 

magnetic field around 10 T, splitting the nuclear spin energy levels with a sort of Zeeman 

shift.  Radio frequency pulses can then be used to manipulate the nuclear states.  

 
Figure 5.  The molecule used by Pravia et al [6] in their implementation of a type II NMR quantum 
computer was 13C-Chloroform, with hydrogen and carbon 13 nuclear spins serving as the qubits.  The 
energy levels of the nuclear spin states are split using a strong magnetic field. 
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A basic description of a type-II NMR quantum computer is shown in Figure 5 and 

Figure 6.  The nucleons that act as qubits are in the molecules that make up a liquid 

sample—in effect each molecule is a small quantum computer.  Radio frequency pulses 

are used to perform unitary transformations on the qubits in the sample.  Since the sample 

contains some 1023 identical molecules, using a NMR quantum computer amounts to 

performing the same calculation on 1023 quantum computers.  Therefore, when one 

measures the state of a particular qubit, one does it for the entire sample and gets an 

average value of the state.  This is an example of an ensemble measurement discussed in 

section 2.2. 

 
Figure 6.  Basic schematic of type-II NMR quantum computer.  The gradient coil creates a gradient in the 
magnetic field so that the nuclear spin energy levels are shifted by different amounts depending on their 
physical location in the liquid sample.  This allows the RF coil to address different parts of the liquid 
sample with different frequency radio pulses.  Each group of molecules that the RF coil can address with 
one set of frequencies is a node in a type II quantum computer.  In each node there are many molecules that 
are manipulated simultaneously, so that measuring a node is an example of ensemble measurement.  This 
figure was used with permission from [6]. 
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To make a NMR machine a type-II quantum computer, the liquid sample is 

effectively split into nodes using a magnetic field gradient.  This gradient splits the 

nuclear spin states by different amounts depending on a molecule’s location in the liquid 

sample, allowing one to address different sections of the sample with different frequency 

radio pulses. 

The FQLGA has two properties that make it ideal for implementation on a type II 

NMR quantum computer.  First, it requires no more than three entangled qubits, making 

it possible to run the algorithm on a type II computer with three qubits per node.  NMR 

machines with three qubits per node have already been successfully demonstrated using 

Alanine, Trifluorobromoethylene, and Trichloroethylene [15].  Secondly, this algorithm 

stores information in the probability coefficients of the basis states.  This information can 

be obtained by an ensemble measurement over all the molecules in a node of a NMR 

machine.  

3 Fluid Dynamics 

Since the factorized quantum lattice gas algorithm models fluid dynamics, it is 

worthwhile to briefly review this subject along with the classical lattice gas algorithms 

that inspired their quantum counterparts.  This section starts with a brief overview of 

fluid dynamics before discussing classical lattice gas and lattice Boltzmann algorithms. 

3.1  Navier-Stokes fluids: macroscopic scale 

The following section follows Landau and Lifshitz [20], Yepez [4], and Buick 

[21].  The long wavelength hydrodynamic behavior of a fluid at the macroscopic scale 

can be modeled by a set of coupled partial differential equations.  These equations model 
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mass density ( ρ ) and flow velocity (u ) fields, and are called the continuity and Navier-

Stokes equations.   

Since the fluid mass change in a region ℜ  comes from the fluid flux through the 

boundary ∂ℜ , ρ  and u  must obey 

 ( ) 0t i iuρ ρ∂ + ∂ =  (3.1) 

which is the continuity equation.  Here the shorthand /t t∂ = ∂ ∂  and /i ix∂ = ∂ ∂  is used, 

along with Einstein indicial notation, which implies summation over repeated indices.   

The field equation for Newton’s second law, which expresses the change in the 

momentum density in terms of the stress at the boundary of the region ∂ℜ , is Euler’s 

equation 

 ( ) 0t i j ijuρ∂ + ∂ Π =  (3.2) 

where the momentum flux density tensor can be written 

 ( , ) 'ij ij i j ijP t u uρ δ ρ σΠ = + − . (3.3) 

The first two terms are the ideal parts of the momentum flux density tensor, which are 

the pressure term ( , )P tρ  and the convective term uuρ .  The pressure term is diagonal 

because the fluid is isotropic.  The last term is the stress tensor, equal to 

2' ( )ij i j j i k k ij ij k kDu u u uσ η δ ζδ= ∂ + ∂ − ∂ + ∂ , where η  is the shear viscosity, ζ  is the bulk 

viscosity, and D is the number of spatial dimension of the system.   

Substituting (3.3) into Euler’s equation gives the Navier-Stokes equation 

 ( ) 2
t i j j i i i i j ju u u P u u

D
ηρ ρν ζ⎛ ⎞∂ + ∂ = −∂ + ∂ + + ∂ ∂⎜ ⎟

⎝ ⎠
 (3.4) 
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where η
ρν ≡  is the kinematic viscosity.  This equation has known solutions in only a few 

simple cases, and computer modeling with various numerical techniques are typically 

necessary to solve this equation for more complex flows. 

The kinematic viscosity ν  is a measure of the rate of decay of local shears in a 

fluid, and determines how fast a fluid will relax from an anisotropic to an isotropic flow 

field.  The shear viscosity alone is responsible for the damping of shear waves in the 

momentum density field, while both the shear and bulk viscosities cause damping of 

compression waves in the mass density field. 

L and T are the characteristic length and time scales of a fluid fluctuation.  

Examples of the characteristic length for a hydrodynamic flow are the wavelength of a 

compression wave in the mass density field, the wavelength of a shear wave in the 

momentum density field, or the diameter of a vortex.  Examples of characteristic times 

are the period of a wave, or the rotation period of a vortex.  The mean free path (λ ) and 

time (τ ) are the average distance and time that microscopic particles in the fluid travel 

before colliding.  Two important speeds are the characteristic flow speed υ ~ L
T  and 

sound speed c λ
τ= . 

Relevant dimensionless numbers are: the Knudsen number (Kn) defined as the 

ratio of the mean free path to the characteristic length, the Strouhal number (Sh) defined 

as the ratio of the mean free time to the characteristic time, Mach number (M) defined as 

the ratio of the characteristic velocity and sound speed, and Reynolds number (Re) 

defined as the product of the characteristic velocity and the characteristic length divided 

by the kinematic viscosity.  A list of all these relevant quantities is given in Table 4. 
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Table 4.  List of relevant quantities in fluid dynamics. 

 Symbol Name Description 
ρ  mass density field scalar field that describes the fluid mass density 
u  flow velocity field vector field that describes the fluid velocity 
η  shear viscosity causes damping of compression waves in mass density 

field and shear waves in momentum density field 
ζ  bulk viscosity causes damping of compression waves in mass density 

field 
ν  kinematic viscosity /η ρ≡ , determines how fast perturbed fluid will relax 
L characteristic length length of fluid perturbations 
T characteristic time period of fluid perturbations 
λ  mean free path particles’ average distance between collisions 
τ  mean free time particles’ average time between collisions 
υ  characteristic speed /L T∼  
c sound speed /λ τ∼  

Kn Knudsen number / Lλ≡  
Sh Strouhal number /Tτ≡  
M Mach number / cυ≡  
Re Reynolds number / /L M Knυ ν≡ ∼  

  

Returning to equation (3.4), one can see that the one dimensional Navier-Stokes 

equation simplifies to 

 
2

2 u u uu
t x x

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 (3.5) 

if 0Pη ζ= = = .  This is a simplified model of turbulence and shock formation called the 

Burgers equation [22].  In section 4, we will see that the two qubit Factorized Quantum 

Lattice Gas Algorithm is capable of accurately modeling this equation. 

3.2 Classical lattice gas algorithm: microscopic scale 

In the 1980’s a class of algorithms called Lattice Gas Algorithms (LGA) were 

discovered to behave like a Navier-Stokes fluid by Wolfram [23] and by Frisch, 

Hasslacher, and Pomeau [24], raising the possibility of using massively parallel 

computers running LGAs to simulate fluid dynamics.  These simulations may include 
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attractive interactions between particles to create multiphase fluids [25] or fixed obstacles 

to simulate vortex shedding [26]. 

Lattice gas algorithms move virtual particles along an imaginary lattice and 

change the particles’ momentums using collision rules when they meet at a lattice node.  

The lattice node spacing ( ) is defined to be a microscopic scale length so that LGAs are 

sometimes said to model fluids at this scale.  In fact, lattice gas algorithms grossly 

oversimplify microscopic particle dynamics.  However, this turns out not to matter since 

the macroscopic behavior of a fluid does not depend directly on its microscopic 

components.  This is evident in experiments carried out using wind tunnels and water 

tanks with low Mach flows and similar Reynolds numbers, since the results of both types 

of experiments will be similar [21].  Similarly, LGAs in the continuum limit (with very 

small ) turn out to be accurate models of fluid dynamics. 

The simulated particles in a lattice gas algorithm are located on the nodes of a 

regular lattice.  The position and momentum of each particle is specified by its position 

on the lattice and a displacement vector.  The displacement vector points in the direction 

that the particle will move at the beginning of a time step.  Particles move from one node 

to another in a process called streaming.  In the case of a single speed lattice gas, all 

particles move at the same velocity c τ= , where  is the distance between lattice sites 

and τ is the time step interval [23].  All of the particles stream simultaneously at the 

beginning of a time step.  Most LGAs enforce an exclusion principle so that no more than 

one particle can occupy a state at a given time, though there is usually more than one 

particle at a lattice node.  A state is defined as the location and momentum of a particle.  
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Each state is typically assigned a bit, so that the bit of a full particle state is 1 and 0 for an 

empty state. 

When two or more particles meet at a lattice node, their momentums change in 

accordance with predetermined collision rules.  The updated particle trajectories are then 

streamed at the beginning of the next time step.  This process is shown in Figure 7, with 

particle trajectories at the beginning of a time step labeled by single arrows while the 

trajectories at the end of the time step are labeled by double arrows.   

 
Figure 7.  Triangular classical lattice gas developed by Frisch, Hasslascher, and Pomeau.  Particles at time t 
are marked with a single arrow; those at the next time step t τ+ are marked with double arrows.  Figure is 
reproduced from [24]. 

3.3 Classical lattice Boltzmann algorithm: mesoscopic scale 

To transition from the microscopic scale Classical Lattice Gas Models, which 

contain a number of discrete particles, to the macroscopic scale Navier-Stokes equation, 

which contains a continuous density parameter r, it is necessary to convert the number of 

particles in a given area to a particle density.  In other words, particle number must be 

replaced by a continuous statistical particle distribution function.  This is analogous to 
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describing the motion of a group of microscopic molecules in a fluid by modeling a 

mesoscopic statistical particle distribution, called the Boltzmann distribution ( , , )f x u t , 

that is a function of position, velocity, and time.   

Boltzmann mechanics can be described following Gurnett and Bhattacharjee [27], 

where we consider a group of particles 3 3( , , )f x u t d xd u  in the phase space volume 

element 3 3d xd u  at time t.  These particles’ positions will change to x x uτ′ = +  and their 

velocities to  F
mu u τ′ = +  an instant later at time t τ+ , so that they occupy a new volume 

in phase space: 3 3d x d u′ ′ .  Or in other words, 

 3 3 3 3( , , ) ( , , )F
mf x u u t d x d u f x u t d xd uτ τ τ ′ ′+ + + = . (3.6) 

Any change in the particles distribution that equation (3.6) does not account for must be 

due to collisions ( )fΩ , so that1 

 3 3 3 3( , , ) ( , , ) ( )F
mf x u u t f x u t d xd u f d xd uτ τ τ τ+ + + − = Ω⎡ ⎤⎣ ⎦ . (3.7) 

Expanding this result in a Taylor series and taking the limit that τ  is zero, one arrives at 

the well known Boltzmann Equation 

 ( )u
f Fu f f f
t m

∂
+ ⋅∇ + ⋅∇ = Ω

∂
 (3.8) 

In contrast, if we reconsider the discrete space-time of a lattice gas algorithm and set 

external forces equal to zero, equation (3.7) becomes the finite difference equation 

 ( , ) ( , ) ( )u u uf x u t f x t fτ τ+ + − = Ω  (3.9) 

                                                 
1 The Jacobian of the change in the phase space volume 3 3 3 3Jd xd u d x d u′ ′=  is equal to one. 
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where we now choose to index  f  by the velocity u .  This is called the lattice Boltzmann 

equation.   

There are two methods of modeling this mesoscopic equation.  The first approach 

is to directly simulate the equation on a lattice using continuous values for the particle 

occupation of a state instead of the binary 1 for “particle present” and 0 for “no particle.”  

Algorithms that follow this approach are called lattice Boltzmann algorithms.  The 

second approach is to model discrete microscopic particles on a lattice gas simulation.  

The governing lattice Boltzmann equation is then derived as an approximate description 

of the averaged mesoscopic dynamics [21].   

One way to average over the lattice is called coarse grain averaging and works by 

placing a mesoscopic “superlattice” over the microscopic lattice as shown in Figure 8a, 

and taking the average occupation probability as the value of f at a particular superlattice 

site.  The second method takes an ensemble average of many independent microscopic 

 
 

Figure 8.  a)  Coarse grain averaging works by taking the average over all the microscopic states inside the 
mesoscopic superlattice.  b)  Ensemble averaging works by taking the average over many independent 
microscopic realizations to obtain the particle distribution at each site.  
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realizations to arrive at a value for f.  The factorized quantum lattice gas algorithm uses 

the second method to obtain the distribution f. 

To transition from a discrete (in space) mesoscopic scale simulation to a 

continuous macroscopic scale Navier-Stokes simulation one must let the lattice cell size 

approach zero in the continuum limit as shown in Figure 9.  In this limit, it is possible to 

perform a Chapman-Enskog expansion to derive the macroscopic governing equation of 

the fluid [24].   

 
Figure 9.  Decreasing the mesoscopic lattice cell size towards zero increases the simulation resolution and, 
in the continuum limit, will approximate a continuous macroscopic field. 

When performing this expansion, one should note that the particles in a lattice gas 

algorithm undergo random walk.  That is, a tagged particle will move a distance which 

asymptotically approached L = 2 /n π  after streaming 2n  times.  Since particles stream 

at the end of every time step, 2n τ  = T.  This implies that in random walk processes Sh ~ 

Kn2 ~ 2 2(1/ )n ε≡ —a condition called diffusive ordering, which produces viscous 

hydrodynamic behavior [5, 28].  This will become important as the Chapman-Enskog 

analysis is described in further detail in the next section. 
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4 Factorized Quantum Lattice Gas Algorithm 

As discussed in section 2.3, type II NMR quantum computers are well suited to 

simple algorithms that requires massive parallelism.  LGAs fit this description well, and 

it was this observation that lead Yepez [2-5] to develop the factorized quantum lattice gas 

algorithm (FQLGA) to test the modeling utility of quantum computers.  The algorithm is 

called “factorized” because it is not meant to run on a fully coherent computer, but rather 

on one that is made up of many smaller quantum computers.  Constant measurement of 

the system allows one to transfer classical information between the smaller quantum 

computers so that the system need not be fully coherent. 

 
Figure 10.  The 1-D factorized quantum lattice gas model developed by Yepez.  Each lattice site is 
simulated by a node on a type II NMR quantum computer.  The probability of finding a particle moving 
right at lattice site l is given by qubit 1 in node l, and the probability of finding a particle moving left at that 
lattice site is given by qubit 2.  Since there are many computers per node in a type II NMR machine, one 
can perform an ensemble measurement on each node to obtain the probabilities that will be streamed via 
classical communications channels to neighboring nodes. 

The FQLGA is similar to a classical LGA in that it simulates particles moving 

along a lattice as shown in Figure 10.  As in a classical LGA, the particles move via 

streaming and obey collision rules when two particles meet at a node.  However, unlike a 

classical LGA, the collision rules are unitary operations which mix those states at a lattice 

site.  Following the collision operation, the updated probabilities for particles moving 

right (particle 1) and left (particle 2) are obtained via ensemble measurement.   These 

updated probabilities are classically streamed to nearest neighbor lattice sites, marking 

the end of a time step.  Since the collision operator will only mix those states at a given 

lattice site, each lattice site can be simulated by a node on a type II quantum computer.  

Thus, the 1-D FQLGA developed by Yepez with two particles per lattice site (moving 



 28

right and left) requires a type II quantum computer with two qubits per node.  This entire 

process is described in more detail in the following section. 

4.1 The four steps process for the FQLGA 

4.1.1 Step 1: computational memory state encoding 

The first step in the FQLGA is to encode the computational memory state for the 

two qubits 1( , )lq x t  and 2 ( , )lq x t , representing particles 1 and 2 at the lattice site l 

(located at lx ), at time t.  At time to, the probabilities are given by initial conditions 

provided by the user.  Subsequent probabilities are determined by the algorithm.  The 

probability for particle m to exist at a lattice site located at lx  at time t is written 

( , )m lp x t , so that the mth qubit is encoded as 

 ( , ) ( , ) 1 1 ( , ) 0m l m l m lq x t p x t p x t= + − . (4.1) 

Here the basis state 1  means a particle exists in the simulated state and 0  means it 

doesn’t.  The state of the entire node is called the local state and is given by the tensor 

product of the qubits 1( , )lq x t  and 2 ( , )lq x t .  It has the form 

 
1 2

1 2 1 2

1 2 1 2

( , ) ( , ) ( , )

11 (1 ) 10

(1 ) 01 (1 )(1 ) 00

l l lx t q x t q x t

p p p p

p p p p

ψ = ⊗

= + −

+ − + − −

 (4.2) 

where I have dropped the explicit time and position dependence of ( , )m lp x t  for 

convenience, and the labels inside the kets are ordered for particles 1 and 2.  Note that I 
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have assumed the qubits are distinguishable since the local ket is neither symmetric nor 

antisymmetric1. 

4.1.2 Step 2: collision 

Following memory state encoding the local state undergoes unitary evolution.  

This is analogous to the collision operator in the classical LGA and is therefore labeled 

Ĉ .  Thus, the local state becomes 

 ˆ'( , ) ( , )l lx t C x tψ ψ= . (4.3) 

If we use the basis in (2.2) and choose a collision operator that conserves particle number 

then the operator will be block diagonal and have the form  

 

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

i i i i

i i i i

e e e e
e e e e

σ ξ σ φ

σ φ σ ξ

θ θ
θ θ− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. (4.4) 

The block that mixes the states 10  and 01  is a U(2) matrix.  

4.1.3 Step 3: measurement 

This step destroys the quantum superposition and measures the probability of 

each qubit to be in the state 1 .  As discussed in section 2.1.2, this probability can be 

obtained via an ensemble measurement, and for convenience may be expressed as 

 ˆ' ( , ) '( , ) '( , )m l l m lp x t x t n x tψ ψ=  (4.5) 

                                                 
1 This is reasonable since one designs a quantum computer so that its qubits are distinguishable.  For 

instance, the nucleons chosen to represent qubits have different spin energy levels in a NMR computer.    
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where the operators ˆmn  are given in (2.8) and (2.9).  Notice that the equation  

 ˆ( , ) ( , ) ( , )m l l m lp x t x t n x tψ ψ=  (4.6) 

also holds.  This is of no consequence now but will be useful later. 

4.1.4 Step 4: streaming 

Each lattice site is updated following steps 1 through 3 and the resulting 

probabilities are streamed to the adjacent lattice sites via classical communications 

channels so that 

 ( ,  ) ' ( ,  )m l m m lp x e t p x tτ+ + =  (4.7) 

where e1 = 1 for the right streaming qubit, e2 = -1 for the left streaming qubit, and is the 

lattice spacing.  This signals the end of a time step t, after which the entire process is 

repeated.  The simulation will include many time steps and is typically completed when 

the system reaches equilibrium and exhibits no further change. 

4.2 Quantum lattice Boltzmann equation 

By simple substitution, all four steps in the FQLGA can be encapsulated in one 

equation.  This is carried out as follows: 

 
†

( ,  ) ' ( ,  )
ˆ'( ,  ) '( ,  )
ˆ ˆˆ( ,  ) ( ,  ) .

m l m m l

l m l

l m l

p x e t p x t
x t n x t

x t C n C x t

τ
ψ ψ

ψ ψ

+ + =

=

=

 (4.8) 

With a few modifications, this equation becomes the finite difference quantum 

lattice Boltzmann equation, analogous to the classical equation (3.9).  The first step is to 
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reinterpret the probabilities ( ,  )m lp x t  as a mesoscopic Boltzmann field ( ,  )m lp x t ≡  

( , )m lf x t .  Therefore, equation (4.6) can be rewritten 

 ˆ( , ) ( , ) ( , )m l l m lf x t x t n x tψ ψ=  (4.9) 

and the result of (4.8) can be rewritten  

 †ˆ ˆˆ( ,  ) ( ,  ) ( ,  )m l m l m lf x e t x t C n C x tτ ψ ψ+ + = . (4.10) 

Then all that is left to do is to subtract equation (4.9) from (4.10) so we obtain 

 ( )†ˆ ˆˆ ˆ( ,  ) ( ,  ) ( ,  ) ( ,  )

( )
m l m m l l m m l

m

f x e t f x t x t C n C n x tτ ψ ψ

ψ

+ + − = −

= Ω
 (4.11) 

This is the quantum lattice Boltzmann equation.  This can be further expanded by 

inserting the vectors for ( ,  )lx tψ  and ( ,  )lx tψ  along with the matrices for Ĉ  and ˆmn  

into (4.11).  With much algebraic manipulation [12], the collision function becomes 

[ ]( )2
1,2 2 1 1 2 1 1 2 2sin (1 ) (1 ) sin(2 )cos( ) (1 ) (1 )f f f f f f f fθ θ φ ξΩ = − − − + − − −∓ (4.12) 

or, written more simply 

 ( )2
1,2 1 2 1 1 2 2sin ( ) sin(2 )cos( ) (1 ) (1 )f f f f f fθ θ φ ξΩ = − + − − −∓ . (4.13) 

4.3 Chapman-Enskog expansion 

As mentioned in section 3.3, one can derive the macroscopic governing equation 

in the continuum limit of the lattice by performing a Chapman-Enskog expansion of the 

lattice Boltzmann equation.  This section will follow Yepez [4, 10] to derive the 

macroscopic equation for his model.   



 32

The Chapman-Enskog expansion works by taking a Taylor series expansion of the 

lattice Boltzmann equation around local equilibrium.  In physical systems, local 

equilibrium is the state where particles are in thermodynamic equilibrium with one 

another across mesoscopic or microscopic scale lengths.  In classical lattice Boltzmann 

and quantum lattice gas algorithms, local equilibrium is obtained at a lattice site when the 

collision function no longer changes the particle distribution at that site.  

We expand around local equilibrium because at the mesoscopic scale, most 

systems are at, or very near to, thermodynamic equilibrium.  It is only at the macroscopic 

scale that there are free thermodynamic variables such as local density, temperature, and 

momentum.  Thus, a macroscopic description of a fluid comes from a patchwork of 

slowly varying systems at or very near equilibrium [24]. 

The dimensionless numbers Kn (Knudsen number), Sh (Strouhal number), and Re 

(Reynolds number) discussed in section 3.1 can be used to determine how close a system 

is to equilibrium—at equilibrium these numbers vanish. For instance, at equilibrium the 

characteristic length scale is infinitely large compared to mean free path, so Kn ~ 0.  

However, hydrodynamic behavior is also attained in the long wavelength limit where 

these numbers are close to zero.  Thus, it should be of no surprise that expanding the 

lattice Boltzmann equation around local equilibrium should result in hydrodynamic 

behavior. 

In the following section the local equilibrium value of fm is derived.  In section 

4.3.2 this result is used in the Chapman-Enskog expansion of the quantum lattice 

Boltzmann equation. 
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4.3.1 Local equilibrium 

For simplicity, we will label the equilibrium values of fm as dm.  Local equilibrium 

is defined as the condition where ( ,  ) ( ,  ) 0m l m m ld x e t d x tτ+ + − = ; that is, when 

collisions cause no further change in the distribution function fm.  From this we can see 

that 
1,2 1,2

| 0m f d=Ω = , or from (4.12) 

[ ]2
2 1 1 2 1 1 2 2sin (1 ) (1 ) sin(2 )cos( ) (1 ) (1 ) 0d d d d d d d dθ θ φ ξ− − − + − − − =  (4.14) 

Dividing this equation by 1 2(1 )(1 )d d− −  and rearranging we get 

 1 2 1 2

2 1 1 2

2cot( ) cos( )
(1 ) (1 ) (1 ) (1 )

d d d d
d d d d

θ φ ξ− = −
− − − −

. (4.15) 

Taking the equilibrium probabilities to have the form 

 1
1

1
d

zγ
=

+
         and          2

1
1z

d
γ

=
+

. (4.16) 

and substituting this into (4.15) with some manipulation gives the quadratic equations 

 2 2 1 0γ αγ+ − =  (4.17) 

where cot cos( )α θ φ ξ≡ − .  We take the positive root solution of this (so that dm will be 

positive) so that 

 

2

2

1
1 1 .

γ α α

α α
γ

= + +

= + −
 (4.18) 

Noting that the total number density at a lattice site is 1 2d d ρ+ ≡ and substituting (4.16) 

and (4.17) into this expression, we obtain a quadratic equation in z 

 2 1 ( 1) ( 2) 0z zρ γ ρ ρ
γ

⎛ ⎞
+ + − + − =⎜ ⎟
⎝ ⎠

. (4.19) 
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When the positive root solution of (4.19) along with (4.17) is substituted into (4.16) one 

finally arrives at 

 ( )2 2 2
1,2

1 1 1 ( 1)
2 2

d ρ α α ρ
α

= + − + −∓  (4.20) 

which are the equilibrium values for the two qubit quantum lattice Boltzmann equation. 

4.3.2 Taylor series expansion around local equilibrium 

To keep track of the order of the expansion, one uses a “smallness parameter” ε .  

This is defined to be on the order of the Knudsen number: Kn = / L ~ε .  Like the 

classical lattice gas algorithm, the factorized quantum lattice gas algorithm obeys 

diffusive ordering.  Therefore, 2ε  must be on the order of the Strouhal number Sh = 

T
τ ~ 2ε  [4].  The QLBE can thus be written 

 2( ,  ) ( ,  )m l m m l mf x e t f x tε ε τ+ + − = Ω . (4.21) 

With this we can now find the Taylor series of the left side of  (4.21), which is 

just the quantum lattice Boltzmann equation rewritten to include ε . This gives 

 
2

2 2 2 2 3
2

1 ( )
2

m m m
m m m

f f fe e
t x x

ε τ ε ε ε∂ ∂ ∂
+ + +Ο = Ω

∂ ∂ ∂
. (4.22) 

We did not expand the right hand side of (4.21) because it turns out to be easier in the end 

not to.  Notice that the equation is still exact, since we implicitly keep higher order terms 

in the factor 3( )εΟ . 

The crucial ansatz is to now assume that mf  can be expanded around local 

equilibrium as the sum of md  and a small deviation mfδ , which may in turn be expanded 

in powers of ε : 
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 (0) 2 (1) 3( )m m m mf d f fεδ ε δ ε= + + +Ο . (4.23) 

Inserting this into (4.22) and explicitly writing out only those terms up to second order in 

ε  we obtain 

 
(0) 2

2 2 2 2 2 3
2

1 ( )
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
. (4.24) 

This is the QLBE expanded around equilibrium.  However, we do not have an 

expression for (0)
mfδ .  To obtain one, we take the first moment of the QLBE and solve for 

(0)
mfδ .  First, expand 

 
1,2 1,2

1,2 1,2

(0) 2( )m
m m nf d

n n f d

f
f

ε δ ε
=

=

∂Ω
Ω = Ω + +Ο

∂∑ . (4.25) 

Note that the first term in this expression is equal to zero from the definition of local 

equilibrium.  Equating like powers of ε , the first moment of (4.21) is therefore 

 
1,2 1,2

(0)m m
m n

n n f d

de f
x f

ε ε δ
=

∂ ∂Ω
=

∂ ∂∑ . (4.26) 

From equation (4.13) we see that 1 2Ω = −Ω ≡ Ω .  Then, for simplicity, equation 

(4.26) can be rewritten in vector form 

 (0)ˆˆ de J f
x

ε ε δ∂
=

∂
 (4.27) 

where the vectors d
x

∂
∂  and (0)fδ  are 

 
1

2

d
xm

d
x

d
x

∂
∂

∂
∂

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

       and       
(0)

(0) 1
(0)

2

f
f

f
δ

δ
δ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (4.28) 

and the matrices Ĵ  (the Jacobian) and ê  are 
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 1 2

1 2
1,2 1,2

1 2

1 2

ˆ f f

f f f d

J J
J

J J

∂Ω ∂Ω
∂ ∂

−∂Ω −∂Ω
∂ ∂

=

⎛ ⎞ ⎛ ⎞
= ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠

        and          
1 0

ˆ
0 1

e
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
. (4.29) 

Solving for (0)fδ  is not as easy as finding the inverse of Ĵ , however, because 

this matrix is singular.  Yepez utilizes two (equivalent) methods to find a consistent 

(0)fδ  [10].  The first is to multiply both sides of (4.27) by Ĵ .  The second method is to 

multiply both sides of (4.27) by a “generalized inverse” 1ˆ
genJ − , which Yepez has invented.  

This matrix is similar to the Moore-Penrose pseudoinverse [29]. 

The eigenvalues and left and right eigenvectors of Ĵ  are 

 
( )

( )

2
1 1 1

11 2

2 1 2 2 1 2 2
2 1

10              1 1               E

11                E
1

J
E

JJ J

J J E J J
J J

λ

λ

⎛ ⎞
= = = ⎜ ⎟−− ⎝ ⎠

⎛ ⎞
= − = = ⎜ ⎟−− ⎝ ⎠

 (4.30) 

where the right eigenvectors (often simply called eigenvectors) satisfy ˆ
m m mJ E Eλ= , 

the left eigenvectors satisfy ˆ
m m mE J Eλ= , and the eigenvector lengths are selected so 

that m n mnE E δ= .  From this we see that Ĵ  is  

 1 2
1 1 1 2 2 2 2 2 2

1 2

ˆ J J
J E E E E E E

J J
λ λ λ

⎛ ⎞
= + = = ⎜ ⎟− −⎝ ⎠

 (4.31) 

since 1 0λ = .  This equation is analogous the spectral decomposition of a Hermitian 

matrix, and is equivalent to square matrix diagonalization.  Any n by n square matrix M 

with n independent eigenvectors can be diagonalized using 1− =S MS Λ  [30].  The 

columns of S are the right eigenvectors of M, Λ  is a diagonal matrix with corresponding 
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eigenvalues, and the rows of 1−S  are the left eigenvectors of M since m n mnE E δ= .  

Therefore 1−=M SΛS  is equivalent to (4.31). 

From (4.31), it is clear that 

 2 2
2 2 2 2

ˆ ˆ.J E E Jλ λ= =  (4.32) 

As was mentioned, the first method Yepez uses to find (0)fδ  is to multiply both sides 

of (4.27) by Ĵ .  Then one obtains 

 

2 (0)

(0)
2

(0)
2

(0)

2

ˆ ˆˆ

ˆ ˆˆ  

 which implies

ˆ

1 ˆ .      

dJ e J f
x
dJ e J f
x

de f
x
de f
x

δ

λ δ

λ δ

δ
λ

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

 (4.33) 

The second (and equivalent) method Yepez uses is to multiply both sides of (4.27) 

by his generalized inverse.  The generalized inverse is analogous to the inverse of a 

nonsingular square matrix 1 1 1− − −=M SΛ S .  Yepez uses an identical construction for his 

generalized inverse except that he replaces 1−Λ  with a matrix, 1
gen
−Λ , in which only the 

nonzero diagonal components are inverted.  The procedure for constructing the Moore-

Penrose pseudoinverse is similar, except the vectors which make up 1−S  and S are the left 

and right eigenvectors of †MM .  It can be shown that when M is invertible, the least 

squares solution for =Mx b  is 1
psuedo
−=x M b , where 1

psuedo
−M  is the Moore-Penrose 

pseudoinverse [30].   
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Yepez’s generalized inverse for Ĵ  is 

 ( )1
2 2 2 2 22 2

2 2 2

1 1 1ˆ ˆ
genJ E E E E Jλ

λ λ λ
− = = = . (4.34) 

Multiplying both sides of (4.27) from the left by this generalized inverse, one obtains  

 

1 1 (0)

2 (0)
2 2
2 2

2 (0)

ˆ ˆ ˆˆ

1 1ˆ ˆˆ

ˆ ˆˆ

gen gen
dJ e J J f
x
dJ e J f
x
dJ e J f
x

δ

δ
λ λ

δ

− −∂
=

∂

∂
=

∂

∂
=

∂

 (4.35) 

which may be further simplified following the same steps given in (4.33).  Thus, the two 

methods are equivalent.  If one takes the solution obtained in (4.33) and substitutes it into 

(4.24) one arrives at 

2
2 2 2 2 2 2 2 32

2 2
2 2

1 1 1 ( )
2

m m m m
m m m m

d d d de e e
t x x x x

λε τ ε ε ε ε
λ λ

⎛ ⎞∂ ∂ ∂ ∂∂
+ + + + +Ο = Ω⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

(4.36) 

The next step is to sum these equations over m, noting that 1 2d d ρ+ ≡ , and 

2
me =1.  This gives 

 
2 2

2 2 2 2 32
1 2 2 2

2 2

1 1( ) ( ) 0
2

d d
t x x x x

λρ ρ ρε τ ε ε ε ε
λ λ

⎛ ⎞∂∂ ∂ ∂ ∂
+ − + + + +Ο =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

. (4.37) 

In what follows, Yepez restricts himself to small α  to simplify the resulting equations.  

That is, he assumes that the angles θ , φ , and ξ  in the collision operator are such that 

cot cos( ) 1α θ φ ξ= − << .  Then, using the equilibrium values (4.20), the second term in 

(4.37) is 
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( )
( )

( )

2 2 2
1 2

1/ 22 2

2

1( ) 1 1 ( 1)

( 1) 1 ( 1)

(1 ) 1 ( )

d d
x x

x

x

ε ε α α ρ
α

ρε α ρ α ρ

ρε α ρ α

−

∂ ∂ ⎡ ⎤− = − + − + −⎢ ⎥∂ ∂ ⎣ ⎦
∂

= − − + −
∂

∂
= − +Ο

∂

 (4.38) 

where the Taylor series expansion of ( ) 1/ 22 21 ( 1)α ρ
−

+ −  with respect to α  was taken in 

the last line.  Calculating the components of J one obtains 

 1,2 2,1 2,12
1,2

1 1 2 2

(2 1) (1 )
sin 1

(1 ) (1 )
d d d

J
d d d d

θ α
⎛ ⎞− −

= −⎜ ⎟⎜ ⎟− −⎝ ⎠
∓ . (4.39) 

This implies that  

 2 2
2 1 2 2sin (1 ( , ))J J fλ θ α α ρ= − = − +  (4.40) 

where ( , )f α ρ  is very complicated but has the important property that 

( , ) 1 ( )f α ρ α= +Ο .  The resulting equation is  

 
2 2

2 3 2
2cot cos( )(1 ) cot ( , )

t x x
ρ ρ ρθ φ ξ ρ θ ε εα

τ τ
∂ ∂ ∂

+ − − = +Ο
∂ ∂ ∂

 (4.41) 

Dropping the terms implicit in 3 2( , )ε εαΟ  one obtains a partial differential equation that 

models the FQLGA in the continuum limit of the quantum lattice Boltzmann equation 

(4.11), accurate to first order in time and second order in space for small α . 

For (1 )su c ρ= −  where cot cos( )sc τ θ φ ξ= −  is the speed of sound and 

221
2 cot τν θ=  is the kinematic viscosity, equation (4.41) becomes the Burger’s Equation 

introduced in section 3.1. 

 
2

2

u u uu
t x x

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 (4.42) 
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Thus we have completed the Chapman-Enskog expansion by taking the Taylor series 

expansion of the quantum lattice Boltzmann equation around local equilibrium, valid 

when cot cos( ) 1θ φ ξ− << .  This entire process can be a bit difficult to follow so it is 

summarized here:  

1. Expand mf  around local equilibrium: (0) ...m m mf d fεδ= + +  

2. Insert the expanded mf  into a Taylor series expansion of the QLBE, explicitly writing 

out only those terms of order 2ε  or lower (since the first derivative in time is on the 

order of 2ε ). 

3. Use the first moment of the QLBE to solve for the unknown (0)
mfδ  in terms of md .  

Placing the equations in matrix form can help, but it is nevertheless tricky since the 

matrix J will be singular. 

4. Insert (0)
mfδ  into the results of step 2. 

5. Sum the results of step 5 over m and simplify, taking advantage of the fact that 

m
m

dρ =∑ . 

The resulting equation will be the governing partial differential of the quantum lattice 

Boltzmann equation in the continuum limit. 

4.4 Numerical and experimental simulation of the Burgers equation 

Yepez has run a numeric simulation of this algorithm with a lattice length equal to 

256  on a conventional desktop computer, and compared its results to a known analytic 

solution of the Burgers equation [10].  The initial condition of the simulation was a 
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sinusoidal wave, which generates a shock front at later times.  For the simulation he 

chose 1τ = , 1= , / 4θ π= , and φ ξ= . 

 
Figure 11.  Numerical results of the Burgers equation simulation carried out by Yepez, along with the 
analytic solution.  Agreement between the simulation and the analytic solution is generally very good, with 
slight deviations occurring at later times as a steep shock front is formed.  The simulation shock front is 
sharper than the analytic shock.  This figure was used with permission from [10]. 
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Figure 12.  Experimental results of the two qubit FQLGA simulating the Burgers equation carried out on a 
type II NMR quantum computer.  The black dots are the experimental results and the solid gray line is the 
analytic solution.  This figure was used with permission from [11]. 

The results of this simulation are presented in Figure 11.  The agreement between 

the simulation and analytic solution is generally very good, although there is some 

divergence at later times as the steep shock front forms.  The simulation produces a 

sharper edged shock than the curved edge analytic solution.  The agreement is 

nevertheless impressive since the shock front appears to be greatly under-resolved.  

Comparable classical algorithms used to model the Burgers equation require significantly 
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more lattice sites, 162 65536= , and time steps, 182 262144τ τ= , to model a shock 

formation with this accuracy. 

This simulation has also been run on a working two qubit per node type II NMR 

quantum computer with 16 nodes.  The results of this are shown in Figure 12.  The 

dominant errors in this simulation come from errors in applying the collision operator, 

which accumulate over time.   

5 Three Qubit FQLGA Using Most General Collision Matrix 

The two qubit FQLGA developed by Yepez can be extended in one dimension by 

adding on an additional qubit per lattice site that does not move during streaming.  Thus, 

this sort of algorithm will have three particles per lattice site: particle one streams right, 

particle two does not move, and particle three streams left.  The difficulty in extending 

this algorithm, however, is that each additional qubit greatly increases the complexity of 

the most general collision operator that conserves particle number.  This makes the 

analytic treatment increasingly difficult to carry out.  Nevertheless, I have derived the 

quantum lattice Boltzmann equation for the most general three qubit collision operator 

that conserves particle number, as well as the diffusion equation for a specific collision 

matrix.   

In what follows, I will discuss the analytic treatment of the most general three 

qubit operator before deriving the diffusion equation in full detail.  Then I will show the 

results of numeric simulations of the three qubit FQLGA using the collision matrix which 

models the diffusion equation.  I will compare this simulation to the analytic solution and 

investigate the convergence and numerical stability of the simulation. 
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5.1  Microscopic scale: matrices and basis states 

Like the two qubit algorithm developed by Yepez, my three qubit algorithm is 

designed to conserve particle number.  For this reason, there may only be mixing between 

the states 110 , 101 , and 011 , and separately 001 , 010 , and 100 .  I therefore 

choose the basis given in (2.5), so that 

 

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

111
(1 )110

(1 )101
011 (1 )

001 (1 )(1 )
010 (1 ) (1 )
100 (1 )(1 )
000

(1 )(1 )(1 )

p p p

p p p

p p p

p p p

p p p

p p p

p p p

p p p

ψ
ψ
ψ
ψ

ψ
ψ
ψ
ψ

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ −⎜ ⎟
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟− − −⎝ ⎠

 (5.1) 

where mp  is of course the probability of finding a particle in state m.  This choice makes 

the collision matrix block diagonal.  Thus it must have the form 

 

1 0 0 0
0 (3) 0 0ˆ
0 0 (3) 0
0 0 0 1

U
C

U

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.2) 

This is shorthand, since Ĉ  must be an eight by eight matrix.  The entries U(3) represent 

the most general three by three unitary matrices.  In fact, this collision matrix can be 

simplified even further since U(3) = ie σ SU(3).  From equation (4.10), we see that the 

system dynamics are determined by the matrix †ˆ ˆˆmC n C , where ˆmn  gives the probability of 

finding a particle in state m and represents 
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 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ˆ ˆ, ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟→ →⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 3

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

ˆ
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟→ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.3) 

Since ˆmn  is diagonal we know that †ˆ ˆˆmC n C  must have the form  

†
,1†

†
,2

1 0 0 0
ˆ0 (3) (3) 0 0ˆ ˆˆ

ˆ0 0 (3) (3) 0
0 0 0 0

i i
m

m i i
m

SU e D e SU
C n C

SU e D e SU

σ σ

σ σ

−

−

⎛ ⎞
⎜ ⎟

⋅ ⋅⎜ ⎟= ⎜ ⎟⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

 (5.4) 

where ,
ˆ

m nD  are diagonal matrices that depend on ˆmn .  For instance, for m = 1 

 1,1 1,2

1 0 0 0 0 0
ˆ ˆ0 1 0   and  0 0 0

0 0 0 0 0 1
D D

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.5) 

Obviously, the terms ie σ−  can be factored through the ,
ˆ

m nD  matrices and cancel the terms 

ie σ , so without any loss of generality one can use the simplified collision matrix  
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1 0 0 0
0 (3) 0 0ˆ
0 0 (3) 0
0 0 0 1

SU
C

SU

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.6) 

The matrix SU(3) has eight free parameters and is too complicated to write down here but 

is presented in Appendix A. 

5.2  Mesoscopic scale: quantum lattice Boltzmann equation 

The quantum lattice Boltzmann equation  

 ( )†ˆ ˆˆ ˆ( ,  ) ( ,  ) ( ,  ) ( ,  )m l m m l l m m lf x e t f x t x t C n C n x tτ ψ ψ+ + − = −  (5.7) 

developed in 4.2 is still valid for my three qubit algorithm.  Due to the complexity of the 

most general SU(3) matrix, it is useful to temporarily replace it with the over-

parameterized matrix 

 SU(3)

a b c

f gd

jh k

i i i

i ii

ii i

ae be ce

de fe ge

he je ke

θ θ θ

θ θθ

θθ θ

⎛ ⎞
⎜ ⎟

→ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.8) 

where I have written the entries of the SU(3) matrix as complex numbers in polar form, 

parameterized by the real numbers , , ,a d f h j k− −  and , , ,a d f h j kθ − − .  Since the rows and 

columns of a unitary matrix are orthonormal, the constraints 

 

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1)   1
2)   1
3)   1
4)   1
5)   1
6)   1

a b c
d f g
h j k
a d h
b f j
c g k

+ + =

+ + =

+ + =

+ + =

+ + =

+ + =
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( ) ( )( )

( )( ) ( )

( ) ( )( )

( ) ( )( )

( )( )

7)   0

8)   0

9)   0

10)   0

11)   

b f c ga d

b ja h c k

j f k gh d

d f h ja b

d ga c

i ii

ii i

i ii

i ii

ii

ade bfe cge

ahe bje cke

hde jfe kge

abe dfe hje

ace dge h

θ θ θ θθ θ

θ θθ θ θ θ

θ θ θ θθ θ

θ θ θ θθ θ

θ θθ θ

− −−

−− −

− −−

− −−

−−

+ + =

+ + =

+ + =

+ + =

+ + ( )

( ) ( )( )

0

12)   0

h k

f g j kb c

i

i ii

ke

bce fge jke

θ θ

θ θ θ θθ θ

−

− −−

=

+ + =

 (5.9) 

must be true.  Note that the conjugates of identities 7 through 12 must also be true.  

Though rewriting the SU(3) matrix in the form (5.8) appears to have complicated matters, 

it significantly simplifies the matrix multiplication †ˆ ˆˆ ˆ( )m mC n C n− .  For m = 1, this matrix 

is equal to 

( ) ( )( ) ( )2 2

( ) ( )( ) ( )2 2

( ) ( )( ) ( ) 2 2

(2

0 0 0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0

d f d ga b a c

d f f ga b b c

d g f ga c b c

i ii i

i ii i

i ii i

i

a d abe dfe ace dge

abe dfe b f bce fge

ace dge bce fge c g

h hje

θ θ θ θθ θ θ θ

θ θ θ θθ θ θ θ

θ θ θ θθ θ θ θ

− − − −− − − −

− − −− − −

− −− −

−

− + + + +

+ − + + +

+ + +
) ( )

( ) ( )2

( )( ) 2

0

0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0 0 0

h j h k

h j j k

j kh k

i

i i

ii

hke

hje j jke

hke jke k

θ θ θ θ

θ θ θ θ

θ θθ θ

− − −

− − −

−−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎜ ⎟
⎝ ⎠

.(5.10) 

Then, using the identities 4 through 6 and 10 through 12 in (5.9), this matrix becomes 

( ) ( )2

( ) ( )2

( )( ) 2

( ) ( )2

( ) ( )2

( )( ) 2

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

h j h k

h j j k

j kh k

h j h k

h j j k

j kh k

i i

i i

ii

i i

i i

ii

h hje hke

hje j jke

hke jke k

h hje hke

hje j jke

hke jke k

θ θ θ θ

θ θ θ θ

θ θθ θ

θ θ θ θ

θ θ θ θ

θ θθ θ

− − − −

− − −

−−

− − − −

− − −

−−

− − −

− − −

− − −

− + 0
0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.11) 

Multiplying this matrix from the left by ψ  and from the right by ψ  and using identity 

3 from (5.9) one obtains the collision function for the first QLBE collision function. 
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2 2 2
1 1 2 3

1 2 2 3 3

2 1 1 3 3

3 1 1 2 2

( 1)

2 cos[ ](1 2 ) (1 ) (1 )

2 cos[ ](1 2 ) (1 ) (1 )

2 cos[ ](1 2 ) (1 ) (1 )   .

h j

h k

j k

k p j p h p

hj p p p p p

hk p p p p p

jk p p p p p

θ θ

θ θ

θ θ

Ω = − + + +

− − − − +

− − − − +

− − − −

 (5.12) 

With similar work one obtains the second and third collision functions: 

 

2 2 2
2 1 2 3

1 2 2 3 3

2 1 1 3 3

3 1 1 2 2

2 2 2
3 1 2 3

1 2 2 3 3

( 1)

2 cos[ ](1 2 ) (1 ) (1 )

2 cos[ ](1 2 ) (1 ) (1 )

2 cos[ ](1 2 ) (1 ) (1 )

( 1)

2 cos[ ](1 2 ) (1 ) (1 )

2 cos[

d f

d g

f g

a b

a

g p f p d p

df p p p p p

dg p p p p p

fg p p p p p

c p b p a p

ab p p p p p

ac

θ θ

θ θ

θ θ

θ θ

θ

Ω = + − + +

− − − − +

− − − − +

− − − −

Ω = + + − +

− − − − +

2 1 1 3 3

3 1 1 2 2

](1 2 ) (1 ) (1 )

2 cos[ ](1 2 ) (1 ) (1 )   .
c

b c

p p p p p

bc p p p p p

θ

θ θ

− − − − +

− − − −

 (5.13) 

Using identities 10 through 12 in (5.9) and their conjugates one can see that  

 

13)   cos( ) cos( ) cos( ) 0

14)   cos( ) cos( ) cos( ) 0

15)   cos( ) cos( ) cos( ) 0

a b d f h j

a c d g h k

b c f g j k

ab df hj

ac dg hk

bc fg jk

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

− + − + − =

− + − + − =

− + − + − =

 (5.14) 

so that 1 2 3 0Ω +Ω +Ω = . 

5.3  Macroscopic scale: Chapman-Enskog 

As discussed in section 4.3.2, the quantum lattice Boltzmann equation can be 

expanded in a Taylor series around local equilibrium to yield 

 
(0) 2

2 2 2 2 2 3
2

1 ( )
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
. (5.15) 
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One may sum these equations over m with 1 1e = , 2 0e = , 3 1e = − , and 1 2 3d d dρ = + +  to 

obtain 

 
2

2 2 (0) (0) 2 2 3
1 3 1 3 2

1( ) ( ) ( ) 0
2

d d f f
t x x x
ρ ρε τ ε ε δ δ ε ε∂ ∂ ∂ ∂
+ − + − + +Ο =

∂ ∂ ∂ ∂
. (5.16) 

The key difficulty now is finding the local equilibrium values md , which one 

needs to solve for 1 3( )d d−  and (0) (0)
1 3( )f fδ δ−  to complete the Chapman-Enskog 

expansion.  Since the collision functions sum to zero, only two of these functions are 

linearly independent.  The collision functions are each equal to zero at local equilibrium.  

Therefore, the three equations that one must solve to obtain the three unknown 

equilibrium values are 

 
1

2

1 2 3

0

0

.

m m

m m

p d

p d

d d dρ

=

=

Ω =

Ω =

= + +

 (5.17) 

The complexity of the collision functions necessitates making a variable 

substitution to simplify the first two equations.  Making the substitutions  

 1 2 32 2 2

1 1 1,  ,  ,  
1 1 1

d d d
x y z

= = =
+ + +

 (5.18) 

and multiplying the first two equations in (5.17) by 2 2 2(1 )(1 )(1 )x y z+ + +  simplifies 

these equations so that they no longer depend on the square root of the variables we are 

trying to solve for.  The three equations become 

 

2 2 2 2 2 2

2 2

2 2 2 2 2 2

(( 1) 2 cos( ) )

(2 cos( )( 1) 2 cos( )( 1) )

2 cos( ) ( ) (1 ) 0

a b

b c a c

a b

a y ab yz b z c x

bc z y ac y z x

ab yz b c z y a z

θ θ

θ θ θ θ

θ θ

− + − + −

+ − − + − −

− − + − + + − =
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2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2

(( 1) 2 cos( ) )

(2 cos( )( 1) 2 cos( )( 1) )

2 cos( ) (1 ) 0

1 1 1
1 1 1

d f

d g f g

d f

f z df yz d z g x

dg y z fg z y x

df yz f g z y d z

x y z

θ θ

θ θ θ θ

θ θ

ρ

− + − + −

+ − − + − −

− − + − + − =

+ + =
+ + +

 (5.19) 

Unfortunately, the first two equations are quadratic in x, y, and z, and it is not yet known 

if it is possible to find an analytic solution to these three equations, even with the 

additional constraints that come from replacing a-g with the most general values from a 

SU(3) matrix.  Additional research in this area is left for future work, and I have focused 

on a specific SU(3) matrix for the remainder of this thesis. 

6 Diffusion Equation 

6.1 Analytic treatment 

The diffusion equation can be modeled if the SU(3) matrices inside the collision 

function are equal to 

 

2 /3
/6

2 /3

2 /3

1 1
U(3) 1 1

3 1 1

i
i

i

i

e
e e

e

π
π

π

π

−
⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.1) 

Inserting this into (5.12) and (5.13) gives the collision functions 

 

1
1 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

1
2 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

[ 2 2(2 1) (1 ) (1 )

(2 1) (1 ) (1 ) (2 1) (1 ) (1 )]

[ 2 (2 1) (1 ) (1 )

2(2 1) (1 ) (1 ) (2 1) (1 ) (1 )]

p p p p p p p p

p p p p p p p p p p

p p p p p p p p

p p p p p p p p p p

Ω = − + + − − − − +

− − − + − − −

Ω = − + + − − − +

− − − − + − − −
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1

3 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

[ 2 (2 1) (1 ) (1 )

(2 1) (1 ) (1 ) 2(2 1) (1 ) (1 )]

p p p p p p p p

p p p p p p p p p p

Ω = + − + − − − +

− − − − − − −
 (6.2) 

where, as expected, 1 2 3 0Ω +Ω +Ω = . 

Running the numerical simulation presented in section 6.2 suggests that the 

equilibrium values md , are 1 2 3 / 3d d d ρ= = = .  This can be easily verified by noting that 

at equilibrium, the collision matrix should not change the occupation probabilities; that is 

ˆ
eq eqC ψ ψ= .  Thus 

1 2 3/ 6

2 / 3 1 2 3

2 / 3 1 2 3

2 / 3/ 6
1 2 3

2 / 3
1 2 3

2 / 3

1 2 32 / 3

/ 6

3 0 0 0 0 0 0 0
(1 )0 1 1 0 0 0 0

(1 )0 1 1 0 0 0 0
(1 )0 1 1 0 0 0 0

0 0 0 0 1 1 03 (1 )(1 )
0 0 0 0 1 1 0 (1 ) (1
0 0 0 0 1 1 0

0 0 0 0 0 0 0 3

i

i

i

ii

i

i

i

i

d d d
e

d d de
d d de

d d dee
e d d d

e d d d
e

e

π

π

π

ππ

π

π

π

π

−

⎛ ⎞
⎜ ⎟ −
⎜ ⎟

−⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟ − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

(1 )

(1 )

(1 )

(1 )(1 )

) (1 ) (1 )

(1 )(1 ) (1 )(1 )

(1 )(1 )(1 ) (1 )(1 )(1 )

d d d

d d d

d d d

d d d

d d d

d d d

d d d d d d

d d d d d d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠

 (6.3) 

If we insert 1 2 3 / 3d d d ρ= = =  into the above equation, the expression is reduced 

to the following equations 

 

2/3 2/3

/ 6
2/3

/ 6
2/3

2 /3 2 /3

3 3

(2 ) 1 1
3 3 3 33

(2 ) 1 1
3 3 3 33

1 1 ,
3 3

i
i

i
i

e e

e e

π
π

π
π

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

−

−

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.4) 

which of course can be further simplified to the identities 1 = 1 and / 6 2 /3
3

(2 ) 1i ie eπ π−
+ = .   
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This verifies that the diffusion equation collision matrix has no effect on the local state 

when 1 2 3 / 3d d d ρ= = = .  Thus, this must be the equilibrium condition.   

After finding the equilibrium condition, the next step is to perform the Chapman-

Enskog expansion around local equilibrium.  From section 4.3.2, we know that the 

equations  

 
(0) 2

2 2 2 2 2 3
2

1 ( )
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
 (6.5) 

and 

 (0)ˆˆ de J f
x

ε ε δ∂
=

∂
 (6.6) 

are the Taylor series expansion and first moment equation of the FQLBE respectively.  

The vectors in (6.6) are now  

 

1

2

3

d
x

dm
x
d
x

d
x

∂
∂

∂
∂

∂
∂

⎛ ⎞
⎜ ⎟∂

= ⎜ ⎟
∂ ⎜ ⎟⎜ ⎟

⎝ ⎠

   and   

(0)
1

(0) (0)
2
(0)

3

f
f f

f

δ
δ δ

δ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.7) 

and the matrices are 

 
1 0 0

ˆ 0 0 0
0 0 1

e
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

      and      

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3
1,2,3

1 1
2 2

1 1
2 2
1 1
2 2

/3

1
ˆ 1

1

f f f

f f f

f f f f

J

ρ

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

=

⎛ ⎞ −⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎝ ⎠⎝ ⎠

 (6.8) 

Once again Ĵ  is singular.  The eigenvalues and left and right eigenvectors of Ĵ  

are 

 ( )1 1 1

1
3 1        1 1 2         E 0
2 3

1
Eλ

−⎛ ⎞
⎜ ⎟= − = − − = ⎜ ⎟
⎜ ⎟
⎝ ⎠
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( )

( )

2 2 2

3 3 3

1
3 1        1 2 1         E 1
2 3

0

1
10             1 1 1              E 1
3

1

E

E

λ

λ

−⎛ ⎞
⎜ ⎟= − = − − = ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.9) 

with lengths selected so that i j ijE E δ= .  Since 1 2λ λ= , we can use the same sort of 

trick Yepez used (described in section 4.3.2) to solve for (0)fδ : multiply both sides of 

the first moment equation (6.6) by Ĵ .  Ĵ  squared is equal to 

 

( ) ( )( )
( )

2 2
1 1 1 2 2 2 1 1 1 2 2 1 1 2 2

2
1 1 1 2 2

1
ˆ

E E E E E E E E E E E E

E E E E

J

λ λ λ

λ

λ

+ = + +

= +

=

 (6.10) 

Thus equation (6.6) can be solved for (0)fδ  as follows. 

 

2 (0)

(0)
1

(0)
1

(0)

1

ˆ ˆˆ

ˆ ˆˆ

implies

ˆ

1 ˆ

dJ e J f
x
dJ e J f
x

de f
x
de f
x

δ

λ δ

λ δ

δ
λ

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

 (6.11) 

Inserting this solution into (6.5) along with the equilibrium condition / 3md ρ=  

produces 

 2 2 2 2 2 2 2 31 1 1 ( )
3 3 18

m m m
m m m

d d de e
t x x

ε τ ε ε ε∂ ∂ ∂
+ − +Ο = Ω

∂ ∂ ∂
. (6.12) 
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Summing these equation over m with 1 1e = , 2 0e = , and 3 1e = −  produces the 

diffusion equation 

 
2 2

3
2 ( )

9t x
ρ ρ ε

τ
∂ ∂

= +Ο
∂ ∂

. (6.13) 

This derivation suggests that the simulation is accurate to at least first order in 

time and second order in space.  The diffusion coefficient for the three qubit FQLGA is 

equal to 2 / 9d τ=  where  is the lattice spacing and τ  is the time step.  It is possible to 

arbitrarily change either  or τ  to adjust the diffusion constant.  For instance, if one 

wishes the diffusion constant to be 1/9 m2/s, then  is one meter if the time step τ  is 

defined to be one second. 

6.2 Numerical treatment 

The results of a numerical simulation of the diffusion equation three qubit 

FQLGA model are presented in this section.  All numerical simulations were run in 

Mathematica 5.1 or 5.2 on a conventional desktop computer. 

6.2.1 Sum of Gaussian and sinusoid initial condition 

The three qubit FQLGA is carried out using circular boundary conditions—that is, 

(0, ) ( , )t L tρ ρ=  where L is the length of the lattice, set to 250  for this simulation.  The 

initial condition was  

 
2/ 2

/101 2 7 13( ,0) sin
6 10 60

x L
Lxx e

L
πρ

−⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞= + +⎜ ⎟

⎝ ⎠
. (6.14) 

The solution to the diffusion equation with circular boundary conditions is 
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2(2 / )

1

2 2( , ) sin cosd m L t
exact m m

m

mx mxx t B e C D
L L

π π πρ
∞

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  (6.15) 

where 

 

0

0

0

1 ( ,0)

2 2( ,0)cos

2 2( ,0)sin  .

L

L

m

L

m

B x dx
L

mxD x dx
L L

mxC x dx
L L

ρ

πρ

πρ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

∫

 (6.16) 

The derivation of this solution is presented in Appendix B.  From this solution, 

one should expect the simulation to exhibit a roughly exponential decay from the initial 

condition to the average of the initial state 0D , where the exponential decay constant of 

higher frequency terms (in space) is larger than that of low frequency terms.  The qubits 

are each initialized to be ( ,0) / 3zρ  so that they will be close to local equilibrium after the 

first and subsequent time steps.  The results of the simulation are presented in Figure 13. 

The FQLGA results are shown in gray while the black line is the sum of the first 

14 terms of the analytic solution (6.15).  The sum is cut off after 14 terms because the 

coefficients mC  and mD  for 14m >  are less than the negligible value 10-10.  The average 

percent error between the simulation and the analytic solution is shown in Figure 14 and 

Figure 16.  The maximum percent errors are shown in Figure 15 and Figure 17.  From 

these figures, one can see that the magnitude of these errors oscillates within the first ten 

time steps, after which they begin to steadily decrease as the simulation approaches 

equilibrium. 
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Figure 13.  The results of the FQLGA simulation with circular boundary conditions for a number of time 
steps.  The simulation lattice points make up the thick gray line while the exact solution is in black.  The 
solution decays to the average density of the initial condition. 
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Figure 14.  Plot of the average percent errors over the entire lattice for the first 20 time steps.  Oscillations 
in these errors are apparent at the beginning of the simulation but disappear after about ten time steps.  
After this, the errors decrease as shown in Figure 16.  

 
Figure 15.  Plot of the maximum percent errors in the lattice for the first 20 time steps.  Oscillations in the 
maximum percent errors are also apparent at the beginning of the simulation.  The largest percent error 
during the simulation occurs after the first time step, and is ~ 0.14%. 
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Figure 16.  Plot of the average percent errors every 300 time steps.  The errors decrease as the simulation 
moves closer to equilibrium.   

 
Figure 17.  Plot of the maximum percent error every 300 time steps.  
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From these plots we see that the maximum percent error is only about a tenth of a 

percent, while the largest average percent error is .03 %, indicating that the simulation is 

a very accurate model of the diffusion equation at this lattice resolution.  Increasing the 

resolution (that is, increasing the number of lattice sites) only improves the average 

percent error, as is clear from Figure 18.  This is a log-log plot of the lattice resolution 

verses the average percent error.  The plot was made by running identical simulations for 

15 time steps with lattice lengths ranging from 50  to 12800 .  The error decreases as 

 percent error ~ 2.01xδ  where /x Lδ ≡ , indicating second order convergence in space. 

 
Figure 18.  Log-log plot of the average percent error verses the lattice resolution.  The same simulation was 
run with lattice lengths ranging from 50  to 12800 , each evaluated at 15τ .   The slope of the best fit 
solid line is 2.01, indicating second order convergence in space. 

6.2.2 Delta function initial condition 

A two qubit FQLGA simulation of the diffusion equation was developed by 

Yepez [8].  This algorithm has the unfortunate property that the lattice consists of two 
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interpenetrating but noninteracting lattices.  This is due to the fact that when qubit one 

from lattice site m streams right, qubit two of lattice site m+1 streams left.  Thus, the left 

streaming qubit reaches lattice site m without ever having collided with the right 

streaming qubit, which is now on lattice site m+1.  This occurs everywhere in the lattice 

so that qubits will only interact with those from every other lattice site.  This can be 

demonstrated if, for example, the simulation’s initial condition is a delta function1 as 

shown in the left column of Figure 19.   

   
Figure 19.  Results of Yepez’s two qubit diffusion equation simulation with a delta function initial 
condition.  The left column shows the results of the unmodified algorithm with qubits one and two 
streaming every time step.  The sharp spikes in these pictures are due to the noninteracting nature of all the 
qubits.  The right column shows a modified simulation with the left moving qubits streaming every even 
time step and the right moving qubits streaming every odd time step.  The modified algorithm corrects the 
deficiency in the algorithm.  This figure was used with permission from [9]. 

                                                 
1 This is, of course, a Dirac delta function with height equal to one.  
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There are two methods of correcting this deficiency.  The first, taken by Yepez, is 

to stream the left moving qubits every even time step and the right moving qubits every 

odd time step.  The results of this process are shown in the right column in Figure 19.  An 

alternate solution to this problem is to use the three qubit algorithm I have developed.   

The results of a simulation run with a delta function initial condition are presented 

in Figure 20.  In this figure, the time evolution of this function is compared to the analytic 

time evolution of a piecewise defined function.  This piecewise function is equal to zero 

everywhere except between the lattice sites adjacent to the delta function, where it is 

triangular in shape with height equal to one.  This ensures that the total integrated area of 

the piecewise function is equal to the total density of the lattice, so that at infinite time, 

when the evolved lattice and piecewise function have reached equilibrium, the constant 

lattice density will equal the height of the evolved piecewise function. 

The three qubit algorithm does not display the unusual pattern present in the 

unmodified version of the two qubit algorithm, since the streaming qubits interact via the 

stationary qubits.  However, it does not seem that this method is superior to the modified 

two qubit algorithm for two reasons.  The first is that this algorithm can be much more 

difficult to implement experimentally on a NMR computer because increasing the 

number of qubits per node increases the complexity of the system.  In addition, the 

diffusion coefficient for the three qubit algorithm is 2 / 9τ , whereas it is 2 / 2τ  for the 

two qubit algorithm.  This means that for equal lattice lengths and time steps, the two 

qubit algorithm will evolve 4.5 times faster than the three qubit algorithm.   

One should note that neither diffusion equation algorithm effectively models the 

evolution of a large gradient function with poor lattice resolution, such as a delta 
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Figure 20.  Results of the three qubit FQLGA (black data points) with the initial condition equal to zero 
everywhere except at the center lattice site where it is equal to one.  The time evolution of this function is 
compared to the analytic time evolution of a piecewise defined function (solid line), with an integrated area 
equal to the total density of the FQLGA simulation. 
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function.  This is because the “smallness parameter” ε , which was defined to be on the 

order of the Knudsen number, is no longer small.  The Knudsen number is equal to the 

mean free path (the lattice spacing) over the characteristic length (the width of the delta 

function).  Since these two numbers are roughly equal, it is no longer appropriate to 

neglect the terms of order 3ε  and higher in the equation  

 
2 2

3
2 ( )

9t x
ρ ρ ε

τ
∂ ∂

= +Ο
∂ ∂

, (6.17) 

and the diffusion equation is no longer a good approximation of the governing equation 

of the lattice.  It is not surprising, then, that the agreement between the algorithm and the 

analytic solution to the diffusion equation is poor at the beginning of the simulation.  

Nevertheless, at times after about 16τ  the Knudsen number becomes smaller and the 

algorithm begins to converge to the analytic solution of the diffusion equation. 

Another case where the FQLGA can be expected to perform poorly when 

modeling the diffusion equation is when the assumption 

 (0) 2 (1) 3( )m m m mf d f fεδ ε δ ε= + + +Ο  (6.18) 

is no longer valid—i.e. if (0) /m mf dδ  is no longer on the order of ε ~ Kn.  In this case, the 

Chapman-Enskog expansion will fail to produce an equation which accurately models the 

lattice in the continuum limit.  For example, if one were to naively choose the initial 

conditions of the lattice so that the density was not distributed near local equilibrium to 

begin with, then (0) /m mf dδ  will be large and the lattice will not behave in a manner which 

mimics the diffusion equation.  This would have been the case, for instance, if the density 

distribution shown in Figure 13 had initially been distributed so that the total particle 
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density at every lattice site was located in a single qubit, instead of being spread equally 

between qubits one, two, and three.  Therefore, to model fluid dynamics with a FQLGA it 

is essential to distribute the qubit probabilities near local equilibrium when a lattice is 

initialized. 

Returning to the delta function simulation, it is worth pointing out that this 

simulation contains the most extreme gradient possible in the density function ρ .  For 

this reason, it represents a strong test of the numerical stability of both the two and three 

qubit FQLGAs.  Both algorithms perform well under these conditions due to the unitary 

nature and structure of the collision operators.  Since the operators are unitary and block 

diagonal to preserve the probability of measuring qubits in the state 1 , the total 

probability of finding all the qubits in the simulation in the state 1  is preserved.  Thus, 

the values of particle density will remain bound and not “blow up,” and are in this sense 

numerically stable.   

Another common definition of numerical stability concerns the accuracy with 

which an algorithm models an equation [32].  It is clear from the results of this thesis that 

the three qubit Factorized Quantum Lattice Gas Algorithm is, in this sense, a numerically 

stable model of the diffusion equation when the Knudsen is much less than one.  In 

addition, the results presented in Figure 20 suggest that even if the Knudsen number is 

initially large, the algorithm can be numerically accurate at later times as long as the 

initial conditions of the lattice and the simulated function are the same, and the integrated 

area of the simulated function is equal to the average density of the FQLGA. 
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7 Conclusion 

This thesis was written in support of AFRL’s and AFOSR’s Quantum 

Computation for Physical Modeling basic research theme, by exploring and extending a 

quantum algorithm designed to model fluid dynamics using a practical quantum 

computer.  To date, the most advanced type II quantum computer prototype uses NMR 

technology.  Two properties of the algorithm presented in this paper make it an ideal test 

case for the modeling utility of a three qubit per node type II NMR quantum computer.  

The first is that there is a maximum of three qubits that the algorithm requires to be 

coherent at a given time.  This allows the algorithm to be run on a set of three qubit 

parallel quantum computers connected by classical communications channels: a type II 

quantum computer.  The second property that makes the algorithm ideal for a NMR 

quantum computer is that information is stored in the probability coefficients of the qubit 

basis states.  Obtaining these probabilities requires an ensemble measurement of identical 

quantum computers running the same algorithm, which is precisely the sort of 

measurement used in a NMR machine.  Therefore, this algorithm represents a good test 

of the computational capabilities of a NMR quantum computer. 

This thesis extended the Factorized Quantum Lattice Gas Algorithm from two 

qubits to three, in an effort to improve the algorithm and possibly obtain a new 

macroscopic governing equation.  The most general three qubit collision operator that 

preserves particle number was derived, along with the Quantum Lattice Boltzmann 

Equation for this operator.  A partial derivation of the governing macroscopic equation 

for the algorithm in the continuum limit was presented.   
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Difficulties in deriving the qubit local equilibrium values lead me to consider a 

more specific collision operator.  For this operator, the governing macroscopic equation 

for the lattice in the continuum limit was the diffusion equation.  A numerical simulation 

of this algorithm carried out on a conventional desktop computer with a lattice length 

250L =  was then presented and compared to the analytic solution of the one 

dimensional diffusion equation with circular boundary conditions.  The simulation and 

analytic solution matched very well—the largest average percent error occurred after the 

first time step and was 0.03%.  Thereafter the error decreased as the simulation 

progressed.  Repeated simulations with identical initial conditions but varying lattice 

resolutions revealed that the simulation possesses second order convergence in space.   

Simulation of a severely under-resolved gradient (a Dirac delta function) was also 

presented to check for numerical instabilities.  No numerical overflows occurred and the 

model remained stable owing to the collision operator being unitary and block diagonal, 

preserving particle number.  A comparison of the delta function evolution using the 

FQLGA, to the analytic time evolution of a piecewise defined function revealed that the 

diffusion equation remained an accurate governing equation for the FQLGA in the 

continuum limit, as long as the Knudsen number is small.  In addition, it was observed 

that the Chapman-Enskog expansion will not result in a valid governing PDE unless the 

ratio of the lattice deviation from local equilibrium to the local equilibrium density is on 

the order of the Knudsen number. 
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Appendix A.  SU(3) Matrix 
 

A unitary matrix may be generated by exponentiating a Hermitian matrix.  

Exponentiating a Hermitian quantum mechanical Hamiltonian to generate a unitary time 

evolution operator is a well known example of this.   

The collection of all n by n unitary matrices forms a closed group known as U(n).  

The closed subgroup of all unitary n by n matrices with a determinant equal to one is 

called “special” and is denoted SU(n).  Obviously, it is possible to create members of 

these groups by exponentiating Hermitian matrices.  An element R of the unitary group G 

may be written 

 exp[ ]iθ=R S  (A.1) 

 where the Hermitian S is called a generator of G [31].  In addition, since special unitary 

matrices have a determinant equal to one, the generators of a special unitary matrix must 

be traceless [31]. 

 det( ) exp(tr(ln( ))) exp( tr( )) 1 tr( ) 0iθ= = = ⇒ =R R S S  (A.2) 

 Since SU(n) is a closed group, multiplying two or more elements within the group 

will produce another element of that group.  Multiplying all the exponentiated generators 

of a group is one way to create the most general element of that group.  For instance, a 

possible choice for the generators of SU(3) are the Gell-Mann matrices: 

 

0 1 0 0 0 0 0 1 0 0
1 0 0 ,  0 0 ,  0 0 0 ,  0 0 0
0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 ,  0 0 ,  0 1 0 ,  0 1 0  .
0 1 0 0 0 0 0 0 0 0 2

i i
i

i

i
i
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (A.3) 
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Notice that by multiplying each of these matrices by a free parameter and summing them 

together one will obtain the most general three by three traceless Hermitian matrix.   

The exponentiated Gell-Mann matrices are 

 

1 2

3 4

5

cos( ) sin( ) 0 cos( ) sin( ) 0
sin( ) cos( ) 0 ,     sin( ) cos( ) 0

0 0 1 0 0 1

cos( ) 0 sin( ) cos( ) 0 sin( )
0 1 0 ,      0 1 0

sin( ) 0 cos( ) sin( ) 0 cos( )

1 0 0
0 cos( )

i
i

i

i

α α β β
α α β β

γ γ δ δ

γ γ δ δ

ε

⎛ ⎞ ⎛ ⎞
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⎝ ⎠ ⎝ ⎠
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ε ε φ φ
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R

R R

 (A.4) 

Multiplying these matrices together is one method of generating the most general SU(3) 

matrix.  This matrix is very complicated and not worth explicitly writing here. 

For the purposes of the FQLGA, this matrix can be simplified a bit if the order of 

multiplication is 

 8 7 6 5 4 3 2 1

8 7

SU(3) =
=

R R R R R R R R
R R M

 (A.5) 

where M is the product of 6R  through 1R .  Inserting this notation into equation (5.4) we 

see that 
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† † †
7 8 ,1 8 7†

† † †
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since the matrices ,
ˆ

m nD , 7R , and 8R  are all diagonal.  For instance, for the matrix 1,1D̂  

one obtains 

† †
7 8 1,1 8 7

2 2

ˆ
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(A.7) 

Therefore, for the purposes of this FQLGA it is possible to replace the full eight 

parameter SU(3) matrix with the six parameter matrix M.   

In fact, preliminary investigation suggests that it may be possible to replace M 

with a simpler four parameter matrix, which we shall label N.  This can best be 

understood by considering that the purpose of the matrix N is to redistribute probabilities 

among three basis states.  As an example, suppose we were interested in swapping the 

probabilities between the first and second states.  One could then use the following swap 

matrix to do so 
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 1

0 1 0
1 0 0
0 0 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Swap  (A.8) 

If, however, one was interested in only “partially swapping” the probabilities then it 

would be better to use the one over thα  root of 1Swap , which is  
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 (A.9) 

There are three more ways that one can swap probabilities among qubits.  They are listed 

below along with their associated roots. 
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 (A.10) 

The determinants of all the root matrices are complex numbers with magnitude one, 

meaning they are all unitary as opposed to special unitary.  They can easily be made a 

member of SU(3) by multiplying each matrix by its determinate to the 1
3−  power.  
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However, this step complicates the matrices and has no effect on the final results of the 

algorithm, so it is unnecessary.   

 Thus, a simpler four parameter matrix which can replace the eight parameter 

SU(3) may be 
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(A.11) 

where the matrix is written on two lines due to its length. 



 72

Appendix B.  Analytic Solution of the Diffusion Equation 
 

The diffusion equation  

 
2

2d
t x
ρ ρ∂ ∂
=

∂ ∂
 (B.1) 

can be solved assuming a separable solution ( ) ( )X x T tρ = .  Then the diffusion equation 

becomes  

 21 T X k
d T X

′ ′′
= = −  (B.2) 

after dividing (B.1) by d X T .  Note that since the left hand side of the equation depends 

only on t, while the right hand side depends only on x, both sides must be equal to a 

constant to be true for all t and x.  The constant is labeled 2k−  in anticipation of what 

follows. 

By inspection, the solution to the equation 2/T T dk′ = −  is  

 
2

( ) dk tT t Ae B−= +  (B.3) 

where A and B are constants.  The solution to 2/X X k′′ = −  is  

 ( ) sin( ) cos( )X x C kx D kx E= + +  (B.4) 

where C, D, and E are also constants.  With circular boundary conditions, 

 (0) sin( ) cos( ) ( )X D E C kL D kL E X L= + = + + =  (B.5) 

which can only be true if 2 /k m Lπ=  for integer m.  Of course, the most general solution 

for ( )X x  must be the sum of (B.4) over all possible m, so that  
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The initial condition is thus 
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To solve for the constants, we use identities 
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 (B.8) 

Then multiplying both sides of (B.7) by sin(2 / )nx Lπ , integrating from zero to L, and 

using identities two and four gives 
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Similar steps allow one to solve for the constants 
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